Synthesis of non-isothermal water networks including process hot and cold streams
نویسندگان
چکیده
The synthesis problems of non‒isothermal water networks have received considerable attention throughout academia and industry over the last two decades because of the importance of simultaneously minimising water and energy consumption [1]. Most papers have addressed this issue only by considering heat integration between hot and cold water streams. In this study, the scope of heat integration is expanded by enabling heat integration of process streams (such as waste gas streams and reactor effluent streams) together with the water network’s hot and cold streams. This approach integrates the non‒isothermal water network synthesis problem with the classical heat exchanger networks (HENs) synthesis problem by considering them simultaneously as a unified network. A recently proposed superstructure [2] for the synthesis of non‒isothermal process water networks is extended to enable additional heat integration options between hot/cold water streams and hot/cold process streams. Within a unified network, heat capacity flow rates and inlet and outlet temperatures are fixed for process streams, and variable for water streams. The complexity of the overall synthesis problem increases significantly when compared to the syntheses of both networks separately. Therefore, solving this types of problem is more challenging. The objective function of the proposed mixed integer nonlinear programming (MINLP) model accounts for operating costs (including fresh water and utilities) and investment costs for heat exchangers and treatment units. The results indicate that by solving a unified network, additional savings in utilities consumption and total annual cost can be obtained, compared to the sequential solution obtained by solving both sub‒networks separately. Thus, more efficient water networks can be designed.
منابع مشابه
Design of non-isothermal Process Water Networks
Despite the fact that many methods have been developed for the optimization of process water networks, solving the problem simultaneously considering heat recovery has rarely been addressed. This paper presents a new approach for the simultaneous synthesis and optimization of heat integrated water networks. The procedure is based on mixed integer non-linear mathematical programming (MINLP). A n...
متن کاملSimultaneous Synthesis of a Biogas Process and Heat Exchanger Network for a Large-scale Meat Company
The aim of this contribution is to present an industrial application of mathematical programming for the simultaneous synthesis of a biogas plant and its heat exchanger network (HEN), within an existing meat company. The heat-integrated model recently developed by Drobež et al. (2010) has been extended with Yee & Grossmann simultaneous optimization MINLP model (1990) for the synthesis of heat e...
متن کاملMINLP Model and two-level Algorithm for the Simultaneous Synthesis of Heat Exchanger Networks and Utility Systems
This work proposes a novel approach for the simultaneous synthesis of Heat Exchanger Networks (HEN) and Utility Systems. Given a set of hot and cold process streams and a set of available utility systems (e.g., gas turbine, steam cycle, boiler, etc), the method determines the optimal selection of utility systems, their arrangement and design (including steam generator), and the heat exchanger n...
متن کاملNew rigorous one-step MILP formulation for heat exchanger network synthesis
In this paper, a rigorous MILP formulation for grass-root design of heat exchanger networks is developed. The methodology does not rely on traditional supertargeting followed by network design steps typical of the Pinch Design Method, nor is a non-linear model based on superstructures, but rather gives cost-optimal solutions in one step. Unlike most models, it considers splitting, non-isotherma...
متن کاملEnergy Management and Process Improvement of Methanol Production
A heat exchanger network (HEN) for the process of methanol synthesis has been studied by combination of pinch design method and the application of “Twisted Tube” heat exchanger units as a new technology. The HEN is reconstructed based on the full utilization of maximum allowable pressure drops for the process hot and cold streams. An algorithm is developed to generate design procedure for twist...
متن کامل